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Performance Estimation of Diagnostic Tests for
Cervical Precancer Based on Fluorescence

Spectroscopy: Effects of Tissue Type, Sample
Size, Population, and Signal-to-Noise Ratio

Urs Utzinger, E. Vanessa Trujillo, E. Neely Atkinson, Michele F. Mitchell,
Scott B. Cantor, and Rebecca Richards-Kortum*

Abstract— Fluorescence spectroscopy may provide a cost-
effective tool to improve precancer detection. We describe a
method to estimate the diagnostic performance of classifiers
based on optical spectra, and to explore the sensitivity of these
estimations to factors affecting spectrometer cost. Fluorescence
spectra were obtained at three excitation wavelengths in 92
patients with an abnormal Papanicolaou smear and 51 patients
with no history of an abnormal smear. Bayesian classification
rules were developed and evaluated at multiple misclassification
costs. We explored the sensitivity of classifier performance to
variations in tissue type, sample size, tested population, signal
to noise ratio (SNR), and number of excitation and emission
wavelengths. Sensitivity and specificity could be evaluated
within ���7%. Minimal decrease in diagnostic performance is
observed as SNR is reduced to 15, the number of excitation-
emission wavelength combinations is reduced to 15 or the
number of excitation wavelengths is reduced to one. Diagnostic
performance is compromised when ultraviolet excitation is not
included. Significant spectrometer cost reduction is possible
without compromising diagnostic ability. Decision-analytic
methods can be used to rate designs based on incremental
cost-effectiveness.

Index Terms—Cervix, cost-effectiveness analysis, diagnosis, flu-
orescence spectroscopy, precancer, signal-to-noise ratio (SNR).

I. INTRODUCTION

NUMEROUS studies have demonstrated that techniques
based on fluorescence spectroscopy have the potential

to improve the detection of epithelial precancerous lesions
in a variety of organ sites (for a recent review, see [1]–[3]).
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Optical diagnosis can be carried out automatically in real time,
potentially reducing the need for clinical expertise, biopsies
and follow-up visits. As medical costs continue to rise in the
United States, opportunities to develop technologies which
allow more efficient and less costly delivery of health care
are of particular importance [4]. In developing cost-effective
technologies, it is useful to explicitly consider the tradeoff
between economic cost and diagnostic performance within a
decision-analytic model [5]. Most of the literature describing
new optical diagnostic methodologies have compared their
performance to that of a gold standard (such as biopsy) and
the standard of care. Although the potential economic impact
of a few optical techniques have been examined [6], [7], these
articles do not address how to incorporate cost-effectiveness as
a design goal in the technology development phase. This paper
describes a method to characterize the diagnostic performance
of optical technologies which can be used in conjunction with
economic models to develop cost-effective clinical systems.

The accuracy of a diagnostic test is frequently characterized
using the metrics of correct classification rate, predictive
value, sensitivity, and specificity [8]. Unlike correct classi-
fication rate and predictive value, specificity and sensitivity
are theoretically independent of disease prevalence in the
tested population [8]. Thus, sensitivity and specificity provide
an important method to compare the performance of two
diagnostic methods tested in different groups of patients.
However, comparing the performance of two tests based
on a single value of sensitivity and specificity reported for
each can be misleading, because these quantities vary as the
thresholds for a positive diagnosis are raised or lowered [9].
The diagnostic performance of a test can be fully characterized
by reporting sensitivity versus (1-specificity) as the threshold
is varied; the resulting curve is known as a receiver operator
characteristic (ROC) curve [9]. Estimating the ROC curve of
a new diagnostic method relative to an established standard of
care provides a method of judging whether a new technology
adds diagnostic value [10], [11]. To develop new technologies
which are most cost-effective, a method of estimating the
associated ROC curve as a function of the economic cost of
the technology is required. This paper describes a method to
estimate the diagnostic performance of classifiers based on
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optical spectra as a function of the economic cost of the
spectrometer. The method is illustrated by estimating ROC
curves for fluorescence detection of cervical precancer.

Despite the availability of Papanicolaou smear screening,
cervical cancer and its precursors are important and costly
health problems. Worldwide, cervical cancer is the second
most common malignancy in women, and approximately
475 000 women are diagnosed each year with invasive cervical
cancer [12]. In the United States, Kurman estimates that over
$6 billion are spent annually in the evaluation and treatment
of low grade precursor lesions [13]. Optical technologies have
the potential to improve both the screening and detection of
cervical cancer and its precursors; however, it is important
to demonstrate the new health care technologies are both
accurate and cost-effective.

We previously developed an algorithm for the diagnosis
of low grade and high-grade cervical precancers based on
fluorescence spectra at 337-, 380-, and 460-nm excitation using
Bayesian classifiers [14]. Data were divided into a training
set, used to develop the classification rules, and a validation
set, used to test the rules. Sensitivity and specificity were
calculated at a single threshold where the minimum number of
samples were misclassified. Similar sensitivity and specificity
were obtained when the classifier was applied to both the
training and validation sets, and the technique demonstrated
a similar sensitivity and improved specificity relative to col-
poscopy in expert hands [14]. In a subsequent economic
analysis, we showed that this system had the potential to both
increase the number of cases of high-grade cervical precancer
identified as well as to reduce health care costs, with the
potential for annual cost savings of over $600 million in the
United States [6]. The magnitude of the projected savings was
sensitive to the economic cost of the spectroscopy system used
to measure data. In this paper we present a method to estimate
the diagnostic performance of Bayesian classifiers developed
from optical spectra, and to explore the sensitivity of these
estimations to variations in tissue type, sample size, tested
population and economic cost of the spectrometer. Decision-
analytic methods [6] can then be used to rate various designs
based on their incremental cost effectiveness.

II. M ETHODS

1) Clinical System:The portable fluorimeter which was
used to acquire cervical tissue fluorescence has been described
in detail previously [14], and is briefly reviewed here. Two
nitrogen pumped-dye lasers were used to provide illumination
via a fiberoptic probe at three different excitation wavelengths:
337, 380, and 460 nm. The average transmitted pulse energies
at 337-, 380-, and 460-nm excitation wavelengths were 12, 9,
and 14 J, respectively. The laser characteristics were a 5–ns
pulse duration and a repetition rate of 30 Hz. The proximal
ends of the probe’s emission collection fibers were imaged at
the entrance slit of a polychromator coupled to an intensified
diode array controlled by a multichannel analyzer. Using this
system, fluorescence spectra were acquired from the cervix: ten
spectra for ten consecutive pulses were acquired at 337-nm
excitation; next, 50 spectra for 50 consecutive laser pulses

were measured at 380-nm excitation and then an additional
50 spectra at 460-nm excitation. All spectra were corrected
for the nonuniform spectral response of the detection system
using correction factors obtained by recording the spectrum of
an N.I.S.T. traceable calibrated tungsten ribbon filament lamp.
Raw data were preprocessed and expressed in units relative to
the peak fluorescence intensity of a Rhodamine 610 calibration
standard. Spectra were recorded every 5 nm resulting in a
total of 160 measured intensities per measurement site. The
detection system was shot noise dominated.

2) Clinical Data: Clinical data were acquired in two set-
tings: a referral setting, in which spectra were measured from
a group of patients referred for colposcopy on the basis of an
abnormal Papanicolaou smear (Study 1), and in a screening
setting, in which spectra were measured from a group of
patients with no history of an abnormal smear (Study 2). The
details of each study have been previously reported [14], [15],
but are briefly reviewed here.

Study 1: Clinical fluorescence spectra were measured
from 374 cervical sites in a group of 92 nonpregnant patients
referred to the colposcopy clinic of the University of Texas
MD Anderson Cancer Center on the basis of abnormal
cervical cytology. Informed consent was obtained from
each patient who participated and the study was reviewed
and approved by the Institutional Review Boards of the
University of Texas, Austin and the University of Texas M.
D. Anderson Cancer Center. After colposcopic examination
of the cervix, but before tissue biopsy, fluorescence spectra
were typically acquired from two colposcopically abnormal
sites, two colposcopically normal squamous sites and one
normal columnar site (if colposcopically visible) from each
patient. The colposcopic examination includes the application
of acetic acid to the cervix for approximately 2 min. Tissue
biopsies were obtained only from abnormal sites identified by
colposcopy and subsequently analyzed by the probe to comply
with routine patient care procedures. All tissue biopsies were
submitted for histologic examination by a panel of four
board-certified pathologists and a consensus diagnosis was
established using the Bethesda classification system. Samples
were classified as normal squamous (SN) (188 sites), normal
columnar (CN) (26 sites), metaplasia (20), inflammation (25),
low grade squamous intraepithelial lesion (LG SIL) (45 sites),
or high-grade squamous intraepithelial lesion (HG SIL) (70
sites).

Study 2: Clinical fluorescence spectra were measured
from a group of 55 nonpregnant women with no history of an
abnormal Papanicolaou smear. Informed consent was obtained
from each patient who participated and the study was reviewed
and approved by the Institutional Review Boards of the
University of Texas, Austin and the University of Texas M. D.
Anderson Cancer Center. Prior to spectroscopic measurements,
Papanicolaou smears were collected with an endocervical
brush and an Ayre’s spatula. After the Papanicolaou smear
was performed, acetic acid was applied to the cervix. Emission
spectra were collected under colposcopic guidance from an
average of three sites per patient. In the 51 women with a
normal Papanicolaou smear, spectra were obtained from 103
squamous normal sites and 23 columnar normal sites.
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TABLE I
OVERVIEW OF PARAMETERS VARIED DURING ALGORITHM DEVELOPMENT

3) Algorithm Development:The Bayesian algorithm previ-
ously described classifies cervical tissue using three rules: the
first classifies samples as squamous normal (SN) or not based
on normalized fluorescence spectra, the second classifies the
remaining samples as columnar normals (CN) or not based on
normalized, mean-scaled fluorescence spectra, and the third
classifies the remaining samples as LG or HG SIL, based
on normalized fluorescence spectra [14]. We developed each
classification rule and evaluated its performance using separate
training and validation sets using the method described in [14]
with three important differences. First, data were divided into
the training and validation sets with the constraint that spectra
from all sites measured in a particular patient must be placed as
a group in either the training or validation set. Previously, indi-
vidual spectra were randomly assigned to either the training or
validation set, so that not all spectra from a given patient were
found in the same data set. Second, the dimension reduction
using principal component analysis, which represents the first
step of the algorithm development was previously carried out
using both the training and validation sets, and the remaining
steps were carried out using only the validation set. In this
work, all steps, including dimension reduction, were carried
out using only the training set. Finally, in order to study the
influence of various parameters on the algorithm performance,
its development was fully automated. Histograms of principal
component (PC) distributions were fitted to gamma and normal
distributions and results with least error were chosen. A subset
of diagnostically relevant PC’s were selected; the criteria to
retain a PC was based on the statistical significance of the
difference in means of the two tissue classes for that particular
PC, in addition to the variance it accounted for. Only the first
ten PC’s, starting with the one that accounted for the most
variance and going in descending order, were considered in
the algorithm; PC’s were included in the algorithm only if the

difference in the means of the PC for the two tissue classes
was statistically different below the 0.10 level.

4) Analysis of Algorithm Performance:The performance
of each classification rule was assessed by calculating
sensitivity and specificity as the cost of misclassification was
varied [9]. An ROC curve for each data set was estimated
from these data points using the method of Littenberg and
Moses [16]. We explored the sensitivity of the ROC curve
to variations in the tissue type, the size of the training set,
the disease prevalence, the SNR of the data and the number
of excitation and emission wavelengths for which data were
recorded. Table I provides a summary of these studies, which
are described in detail below.

The effect of the training set sample size on both the
training and validation set ROC curves was explored for
each classification rule. First, training sets were used which
contained data from approximately half the patients, with the
remaining patients assigned to the validation set. To make
more efficient use of the available data, the technique of
cross validation was also explored to increase the size of the
training set [17]. Training and validation set ROC curves were
estimated using cross validation under two alternatives: in the
first, data from approximately one-eighth of the patients were
held out at a time, in the second, data from a single patient
were held out a time.

The effect of reducing the disease prevalence on the ROC
curve estimate was explored by combining data from Studies
1 and 2. The classification rules for discrimination of SN and
SIL tissues and CN and SIL tissues were redeveloped using
the combined data. In this case, the training set contained
data from approximately half of the Study 1 and half of the
Study 2 patients and the validation set contained data from the
remaining patients. Training and validation set ROC curves
were estimated in the manner described above.
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The three classification rules developed using cross vali-
dation were then used to estimate the performance of two
composite algorithms, one to separate all normal samples
from all SIL’s and one to separate all normal and LG SIL
samples from HG SIL’s. Composite algorithm performance
was estimated using either data from Study 1 only or the
combined data from Studies 1 and 2. The ROC curves of
the composite algorithm which separates normal samples from
SIL’s were compared to that of colposcopy in the referral
setting, the standard of care for evaluation of an abnormal
Papanicolaou smear [10].

Fluorescence spectra were collected using an expensive
optical system consisting of laser excitation sources and an
optical multichannel analyzer. In both studies, data had a
high signal-to-noise ratio (SNR). The average SNR of these
spectra ranged from 300 at 337-nm excitation to 600 at 460-nm
excitation. We have identified a number of less expensive
spectrometer designs which could be used to obtain tissue
spectra. In order to select the one which is most cost effective,
we must first predict the algorithm performance (in the form of
an ROC curve) with each. In the alternative designs we wish to
evaluate, spectrometer cost is lowered by reducing the target
SNR or by reducing the number of emission or excitation
wavelengths at which data are collected. In particular, reducing
the number of measured emission wavelengths from the 160
in the original data set to only 10–15 can have a significant
effect. Bandpass filters can be used instead of a spectrograph.
Similarly, eliminating the need for UV excitation wavelengths
(337 nm) can significantly reduce cost. The methodology we
have developed to estimate algorithm performance permits
exploration of these alternatives, without the need to collect
additional data.

We first explored the effect of a reduction in the SNR of the
fluorescence spectra by adding increasing amounts of random,
Poisson noise to data from Study 1 in the validation set. The
original spectra were scaled so that the maximum intensity
was equivalent to the square of the target SNR. Then a new
spectrum, with the desired SNR, was generated by feeding
each intensity value individually into a Poisson random num-
ber generator (Statistical Toolbox, Matlab, Mathworks Inc.),
whose mean was equal to the intensity of the scaled spectrum.
The ROC curves for the SN versus SIL classification rule were
estimated using the manner described previously; the training
set contained data from half of the patients with the original
SNR preserved, while the SNR of spectra in the validation set
were varied.

The effect of reducing the number of excitation wavelengths
was studied at two SNR’s: the original and a SNR of 25. The
two composite algorithms were redeveloped using the data
from Study 1 for the seven possible combinations of one,
two and all three excitation wavelengths. The area under the
ROC curve (AUC) for the validation set was calculated at the
original SNR and the reduced SNR. To explore the effect of
simultaneously reducing the number of excitation and emission
wavelengths, this analysis was repeated using a reduced set of
emission wavelengths (Table II), selected because they were
highly correlated to the PC’s which were most diagnostically
useful [14]. The mean emission intensity at the filter center

TABLE II
SET OF REDUCED EMISSION EXCITATION-EMISSION WAVELENGTH

PAIRS AND THEIR CORRESPONDINGFILTER BANDWIDTHS

wavelength was calculated, averaging over the bandpass width
of the filter.

III. RESULTS

Figs. 1(a), 2(a), and 3(a) show the resulting ROC curves for
each classification rule when applied to training and validation
sets, each containing data from approximately half of the Study
1 patients. The training and validation set ROC curves for
discriminating SN and SIL tissues [Fig. 1(a)] are approxi-
mately equal, indicating that the variance of the training set is
sufficient to describe the data in the validation set and that the
training set contains sufficient samples to develop an unbiased
algorithm. The training set ROC curves are higher than those
of the validation set for discrimination of CN and SIL tissues
[Fig. 2(a)] and LG and HG SIL’s [Fig. 3(a)]. This indicates
that the training sets do not contain sufficient CN, LG, or HG
samples to enable development of an unbiased algorithm.

The ROC curves for each classification rule developed using
cross validation with 1/8 of the patients held out at a time
are shown in Figs. 1(b), 2(b), and 3(b). In each figure, the
ROC curves are shown for the eight different training sets
and the single validation set. In the case of the algorithm
which separates SN and SIL tissues [Fig. 1(b)], the ROC
curves of the eight training sets are similar to each other
and to that of the validation set. The agreement between
these nine curves can be used to estimate the uncertainty
in the performance of the classification rule. At the point
closest to ideal performance (the upper left-hand corner), the
maximal variation in sensitivity and specificity is 7%. The
eight training set ROC curves for discrimination of CN and
SIL samples differ greatly [Fig. 2(b)], with maximal variation
of 50% in sensitivity and specificity at the point closest to
the gold standard, indicating that the training set still contains
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(a)

(b)

(c)

Fig. 1. Performance estimates for the classification rule which separates SN
and SIL cervical tissues: (a) comparison of training and validation set ROC
curves for the case where each set contained data from approximately half of
the patients in Study 1, (b) comparison of the eight training and one validation
set ROC curves generated using cross validation, where each training set
contained data from approximately seven-eighths of the patients in Study 1
and the validation set contained all of the patients in Study 1, and (c) validation
set ROC curve generated using the jackknife method (cross validation of one
patient by the other patients).

insufficient samples to develop unbiased algorithms. The train-
ing set curves are much more similar for the classification of
LG and HG SIL tissues (15% maximal variation in sensitivity
and specificity), but the validation set curve shows a small
decrease relative to that of the training set [Fig. 3(b)].

(a)

(b)

(c)

Fig. 2. Performance estimates for the classification rule which separates CN
and SIL cervical tissues: (a) comparison of training and validation set ROC
curves for the case where each set contained data from approximately half of
the patients in Study 1, (b) comparison of the eight training and one validation
set ROC curves generated using cross validation, where each training set
contained data from approximately seven-eighths of the patients in Study 1
and the validation set contained all of the patients in Study 1, and (c) validation
set ROC curve generated using the jackknife method.

Figs. 1(c), 2 (c), and 3(c) show validation set results for
cross validation with a single patient’s data held out at a time.
In all cases, good agreement was observed between all the
training set ROC’s (data not shown) and the validation set
ROC, indicating sufficient sample size.
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(a)

(b)

(c)

Fig. 3. Performance estimates for the classification rule which separates LG
SIL and HG SIL cervical tissues: (a) comparison of training and validation set
ROC curves for the case where each set contained data from approximately
half of the patients in Study 1, (b) comparison of the eight training and
one validation set ROC curves generated using cross validation, where each
training set contained data from approximately seven-eighths of the patients
in Study 1 and the validation set contained all of the patients in Study 1, and
(c) validation set ROC curve generated using the jackknife method.

Fig. 4(a) shows the training and validation set ROC curves
for the discrimination of SN and SIL tissues for the case
where the training and validation sets each contain data from
half of the Studies 1 and 2 patients. Fig. 4(b) shows the
training and validation set ROC curves for the discrimination

(a)

(b)

Fig. 4. (a) Performance estimates for the classification rule which separates
SN and SIL cervical tissues. Comparison of training and validation set ROC
curves for the case where each set contained data from approximately half of
the patients in Studies 1 and 2. (b) Performance estimates for the classification
rule which separates CN and SIL cervical tissues. Comparison of training and
validation set ROC curves for the case where each set contained data from
approximately half of the patients in Studies 1 and 2.

of CN and SIL tissues for the same data. In each case,
the agreement between the training and validation sets is
improved relative to that shown in Figs. 1(a) and 2(a), with
the greatest improvement for the algorithm discriminating CN
and SIL tissues. Furthermore, the validation set curves for the
combined studies are shifted upward and to the left relative
to those from Study 1.

The estimated ROC curves of the composite algorithms to
separate SIL’s from all tissues and HG SIL’s from all tissues
are shown in Fig. 5(a) and (b), respectively. In each case,
composite algorithm performance is shown for the validation
set for data from Study 1 alone and the data from Studies
1 and 2 combined. In Fig. 5(a), the estimated ROC curve
for colposcopy in the referral setting [10] is also shown for
reference.

Fig. 6 shows the effect of reducing the SNR of the validation
set data on the classification rule which separates SN and SIL
tissues in Study 1. As the SNR decreases, the ROC curves
shifts downward and to the right, becoming a test with no
discriminative ability (sensitivity specificity 1) when the
SNR 2. The algorithm performance is relatively insensitive
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(a)

(b)

Fig. 5. (a) Validation set ROC curves for the composite algorithm which
separates SIL’s from other tissues. The composite algorithm is derived from
the two classification rules which separate SN and SIL tissues and CN and
SIL’s tissues. Results are shown for algorithms: 1) derived from and applied to
data from Study 1 alone using cross validation and 2) derived from a training
set containing data from half the patients in Studies 1 and 2 and applied to
a validation set containing data from the other half of the patients in Studies
1 and 2. The ROC curve for colposcopy in the referral setting is also shown
[8]. (b) Validation set ROC curve for the composite algorithm which separates
HG SIL’s from other tissues. The composite algorithm is derived from the
three classification rules which separate SN and SIL tissues, CN and SIL’s
tissues, and LG and HG SIL’s. Results are shown for algorithms: 1) derived
from and applied to data from Study 1 alone using cross validation are shown
and 2) derived from a training set containing data from half the patients in
Studies 1 and 2 and applied to a validation set containing data from the other
half of the patients in Studies 1 and 2.

to large changes in data SNR, and performance does not drop
substantially until a SNR of ten.

Fig. 7 shows the effect of reducing the number of excitation
wavelengths on the area under the validation set ROC curve
(AUC) for Study 1. The two composite algorithms were
developed and tested using cross validation with data from
seven-eighths of the patients. The calculation was repeated
for ten different randomly assigned groupings of patients into
eight sets and the average AUC and the standard deviation
were calculated. Fig. 7(a) shows the AUC for the SIL versus
non-SIL algorithm when the complete emission spectra are
used. At the highest SNR, the performance of all possible com-
binations, except the single excitation wavelength of 380 nm,
performs within one standard deviation of all three excitation

Fig. 6. Validation set ROC curves for the classification rule which separates
SN and SIL tissues as a function of validation set SNR. Results are shown
for an algorithm derived from and applied to data from Study 1 using cross
validation.

wavelengths. At a reduced SNR of 25, all combinations except
the choices of 380-nm excitation alone or 460-nm excitation
alone perform within a standard deviation of all three excita-
tion wavelengths. Fig. 7(b) shows the AUC for the HG versus
non-HG algorithm. At both SNR’s, only the performance of
337-nm excitation alone, 337- and 380-nm excitation together
and 337- and 460-nm excitation together, are within one
standard deviation of all three excitation wavelengths.

Fig. 8 shows similar results with a reduced set of emis-
sion wavelengths. Fig. 8(a) shows the performance of the
SIL versus non-SIL composite algorithm; Fig. 8(b) shows
the performance of the HG versus non-HG algorithm. For
both composite algorithms and at both SNR’s, the use of
337-nm excitation alone, the combination of 337- and 380-nm
excitation and the combination of 337- and 460-nm excitation
perform within one standard deviation of all three excitation
wavelengths.

IV. DISCUSSION AND CONCLUSIONS

The performance of Bayesian classifiers based on fluores-
cence spectra obtained at 337-, 380- and 460-nm excitation
compares well to that of colposcopy. In populations with a
lower disease prevalence, the diagnostic ability of fluores-
cence is increased. At the excitation wavelengths examined
in this study, the ability to discriminate SN and SIL tis-
sues is greatest, and the composite algorithm performance is
limited primarily by the relative difficulty in distinguishing
CN and SIL tissues and LG and HG SIL’s. These excitation
wavelengths were selected on the basis of a pilot study [18],
in which fluorescence excitation emission matrices (EEM’s)
were measured from ten paired biopsies from colposcopically
normal and abnormal squamous epithelium from ten patients.
EEM’s were measured from 250- to 500-nm excitation and
from 260- to 700-nm emissionin vitro. Resulting data were
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(a)

(b)

Fig. 7. Area under the ROC curve for: (a) the SIL versus non-SIL algorithm and (b) the HG versus non-HG algorithm for different combinations of excitation
wavelengths (a = 337, b = 380, c = 460 nm). Results are shown for an algorithm derived from and applied to data from Study 1 using cross validation.

compared to determine optimal excitation wavelengths (three
out of 26) for differentiating squamous normal samples and
SIL’s, and these wavelengths were used in subsequent clinical
trials. Data were not obtained from columnar normal tissue
and there were insufficient samples to compare LG and HG
SIL’s or inflammation and SIL’s. Thus, incorporation of other
excitation wavelengths may improve the performance of the
composite algorithms and is the subject of further research.

In order to interpret whether changes in the performance
of the proposed algorithms are clinically significant, we per-
formed a meta-analysis to estimate the ROC curves for a
number of clinical tests used to diagnose cervical dysplasia,
including the standards of care, repeat Papanicolaou smear and
colposcopy, with emerging technologies such as cervicogra-
phy, HPV testing, and fluorescence spectroscopy [10], [11].
We compared either the area under the ROC curve, or the
point closest to the upper left-hand corner where sensitivity
equals specificity (the Q point). The Q point for colposcopy
is 77% 7%, while that for repeat Papanicolaou smear is
70% 2% [11]. Thus, a shift in sensitivity or specificity of
between 2% and 7% is likely to be clinically significant. The
area under the ROC curve for colposcopy is 0.84, that of the
Papanicolaou smear is 0.76; other emerging technologies have
AUC’s which range from 0.71–0.75 [11]. Colposcopy is the

standard of care for diagnosis of cervical dysplasia, thus a
drop in AUC of (0.84–0.76) 0.08 is clinically significant,
and smaller drops may also be significant.

The agreement between the training set and validation set
ROC curves for fluorescence spectroscopy reported in this
paper is very dependent on the size of the training set. If the
training set is too small, overtraining results. As a result, the
ROC curve of the validation set is shifted downward and to the
right relative to that of the training set. When cross validation
is used, the agreement between the various training set and
validation set ROC curves provides a quantitative manner
to assess the uncertainty associated with the sensitivity and
specificity estimates. This work indicates that, at the excitation
wavelengths presented here, data from 85 SN, 25 CN, and
120 SIL (50 LG and 70 HG) samples are required to estimate
sensitivity and specificity within 7%, just within the variation
which is likely to be clinically significant.

Combining data from two studies of patients with different
disease prevalence showed an increased performance of the
composite algorithms. Recent work [15] indicates that there
may be differences in the fluorescence spectra from colpo-
scopically normal cervical tissue in women with and without a
history of an abnormal Papanicolaou smear at these excitation
wavelengths.
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(a)

(b)

Fig. 8. Performance of: (a) the SIL versus non-SIL algorithm and (b) the HG versus non-HG algorithm for different combinations of excitation wavelengths
and the reduced emission wavelengths listed in Table II (a = 337, b = 380, c = 460 nm). Results are shown for an algorithm derived from and
applied to data from Study 1 using cross validation.

All measurements reported by our laboratory to date have
been performed with scientific grade equipment, which results
in spectra with good SNR and high spectral resolution. This
work shows that significant cost reduction is possible without
compromising the diagnostic ability of the technique. Fig. 6
shows that as the SNR is reduced from of order 300 to 15,
the drop in the area under the ROC curve is not clinically
significant. Below this SNR, performance drops rapidly. Data
acquisition electronics used to capture video signals with
a dynamic range of 4 b to 8 b is sufficient to generate
this SNR. Furthermore, significant reductions in the number
of excitation and emission wavelengths do not significantly
reduce diagnostic ability. Figs. 7 and 8 show, that as the
number of emission wavelengths is reduced from 160 to 15
and as the number of excitation wavelengths is reduced from
three to one, the changes in the area under the ROC curve are
not clinically significant. Measuring fluorescence with one or
two excitation wavelengths and 15 emission wavelengths can
be accomplished with dielectric bandpass filters mounted in
a filter wheel. This opens the opportunity to gain diagnostic
information from fluorescence images of the whole cervix,
because filters can be integrated into imaging optics. The use
of UV excitation at 337 nm was found to be important; all

combinations of one or two excitation wavelengths which
performed similarly to the total of three included 337-nm exci-
tation. Therefore cost reduction achieved by using illumination
optical components made of plastic would result in poor algo-
rithm performance. In summary, as the results presented in this
paper show, the quality (and, thus, the cost) of the spectrometer
can be reduced without affecting algorithm performance.

A method to estimate the expected SNR of various spec-
trometers for measuring cervical tissue was presented in [19],
and this technique can be used to estimate ROC curves as
a function of the economic cost of different spectrometers.
Decision-analytic methods [6] can then be used to rate various
designs based on their incremental cost-effectiveness, which
will provide a rational guide for cost-effective instrument
design for an emerging diagnostic technology. Our previous
decision analysis [6] showed that a strategy based on a
combination of fluorescence spectroscopy and colposcopy was
both more effective and less expensive than the standard
of care for diagnosis and treatment of cervical precancer,
based on the outcome of dollars spent per case of high-grade
precancer detected. However, it is difficult to assess accurately
the costs of fluorescence spectroscopy because the technology
is still in development. In estimating the cost of any diagnostic
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technology, one must consider two components: 1) the cost of
the diagnostic test itself and 2) the cost of physician time.
As the costs of fluorescence spectroscopy were varied from
80% to 100% that of colposcopy, the results of our decision
analysis stayed the same [6]. The second component, cost
of physician time, depends directly on the degree to which
the new technology has diffused into clinical practice. In the
early phases of diffusion into clinical practice, we expect that
physicians will perform the fluorescence spectroscopy based
diagnostic test. As the technique becomes accepted widely,
nurse practitioners or trained technicians can be expected to
perform spectroscopy procedures. Our analysis [6] showed that
the results were sensitive to the extent of technology diffusion.
Thus, to provide a cost-effective diagnostic tool, the instrument
costs of fluorescence spectroscopy devices must approach
those of colposcopy and the instruments must be robust enough
that they can be operated by less trained personnel.

The importance of considering such issues at an early stage
is pointed out by the recent experience with improved tools
for preparing Papanicolaou smears [20]. The ThinPrep test
provides improvements in sensitivity, but at a higher cost,
which could add $1 billion to health care costs annually
in the United States without proven evidence that it saves
more lives than a regular Papanicolaou smear [20]. Thus,
for emerging technologies such as optical spectroscopy to
be adopted will require evidence that they are both accurate
and cost-effective. Our results here and in [6] show that,
through careful spectrometer design, optical spectroscopy has
the potential to be both more effective and less expensive
than the current standard or care. This may provide a rare
opportunity for patients, providers and payers to be on the
same side of a new technology.
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